Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data

نویسندگان

  • Yulong Zhang
  • Conghe Song
  • Ge Sun
  • Lawrence E. Band
  • Asko Noormets
  • Quanfa Zhang
چکیده

Light use efficiency (LUE) is a key biophysical parameter characterizing the ability of plants to convert absorbed light to carbohydrate. However, the environmental regulations on LUE, especially moisture stress, are poorly understood, leading to large uncertainties in primary productivity estimated by LUE models. The objective of this study is to investigate the effects of moisture stress on LUE for a wide range of ecosystems on daily, 8 day, and monthly scales. Using the FLUXNET and Moderate Resolution Imagine Spectroradiometer data, we evaluated moisture stress along the soil-plant-atmosphere continuum, including soil water content (SWC) and soil water saturation (SWS), land surface wetness index (LSWI) and plant evaporative fraction (EF), and precipitation and daytime atmospheric vapor pressure deficit (VPD). We found that LUE was most responsive to plant moisture indicators (EF and LSWI), least responsive to soil moisture (SWC and SWS) variations with the atmospheric indicator (VPD) falling in between. LUE showed higher sensitivity to SWC than VPD only for grassland ecosystems. For evergreen forest, LUE had better association with VPD than LSWI. All moisture indicators (except soil indicators) were generally less effective in affecting LUE on the daily and 8 day scales than on the monthly scale. Our study highlights the complexity of moisture stress on LUE and suggests that a singlemoisture indicator or function in LUEmodels is not sufficient to capture the diverse responses of vegetation to moisture stress. LUE models should consider the variability identified in this study to more realistically reflect the environmental controls on ecosystem functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration

Satellite-based vegetation indices (VIs) and Apparent Thermal Inertia (ATI) derived from temperature change provide valuable information for estimating evapotranspiration (LE) and detecting the onset and severity of drought. The modified satellite-based Priestley-Taylor (MS-PT) algorithm that we developed earlier, coupling both VI and ATI, is validated based on observed data from 40 flux towers...

متن کامل

How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?

A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximate...

متن کامل

Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set

Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variabili...

متن کامل

Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET

Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variabili...

متن کامل

Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems

The rapid growth in electric light usage across the globe has led to increasing presence of artificial light in natural and semi-natural ecosystems at night. This occurs both due to direct illumination and skyglow scattered light in the atmosphere. There is increasing concern about the effects of artificial light on biological processes, biodiversity and the functioning of ecosystems. We combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015